The evolution of virulence in RNA viruses under a competition-colonization trade-off.

نویسندگان

  • Edgar Delgado-Eckert
  • Samuel Ojosnegros
  • Niko Beerenwinkel
چکیده

RNA viruses exist in large intra-host populations which display great genotypic and phenotypic diversity. We analyze a model of viral competition between two viruses infecting a constantly replenished cell pool. We assume a trade-off between the ability of the virus to colonize new cells (cell killing rate or virulence) and its local competitiveness (replicative success within coinfected cells). We characterize the conditions that allow for viral spread by means of the basic reproductive number and show that a local coexistence equilibrium exists, which is asymptotically stable. At this equilibrium, the less virulent competitor has a reproductive advantage over the more virulent colonizer reflected by a larger equilibrium population size of the competitor. The equilibria at which one virus outcompetes the other one are unstable, i.e., a second virus is always able to permanently invade. We generalize the two-virus model to multiple viral strains, each displaying a different virulence. To account for the large phenotypic diversity in viral populations, we consider a continuous spectrum of virulences and present a continuum limit of this multiple viral strains model that describes the time evolution of an initial continuous distribution of virulence without mutations. We provide a proof of the existence of solutions of the model equations, analytically assess the properties of stationary solutions, and present numerical approximations of solutions for different initial distributions. Our simulations suggest that initial continuous distributions of virulence evolve toward a distribution that is extremely skewed in favor of competitors. At equilibrium, only the least virulent part of the population survives. The discrepancy of this finding in the continuum limit with the two-virus model is attributed to the skewed equilibrium subpopulation sizes and to the transition to a continuum. Consequently, in viral quasispecies with high virulence diversity, the model predicts collective virulence attenuation. This result may contribute to understanding virulence attenuation, which has been reported in several experimental studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Competition-colonization trade-off promotes coexistence of low-virulence viral strains.

RNA viruses exist as genetically diverse populations displaying a range of virulence degrees. The evolution of virulence in viral populations is, however, poorly understood. On the basis of the experimental observation of an RNA virus clone in cell culture diversifying into two subpopulations of different virulence, we study the dynamics of mutating virus populations with varying virulence. We ...

متن کامل

Competition-colonization dynamics in an RNA virus.

During replication, RNA viruses rapidly generate diverse mutant progeny which differ in their ability to kill host cells. We report that the progeny of a single RNA viral genome diversified during hundreds of passages in cell culture and self-organized into two genetically distinct subpopulations that exhibited the competition-colonization dynamics previously recognized in many classical ecolog...

متن کامل

Competition-colonization dynamics in experimental bacterial metacommunities.

One of the simplest hypotheses used to explain species coexistence is the competition-colonization trade-off, that is, species can stably coexist in a landscape if they show a trade-off between competitive and colonization abilities. Despite extensive theory, the dynamics predicted to result from competition-colonization trade-offs are largely untested. Landscape change, such as habitat destruc...

متن کامل

Evolution of increased survival in RNA viruses specialized on cancer-derived cells.

Viruses and other pathogens can diverge in their evolved host-use strategies because of exposure to different host types and conflicts between within-host reproduction and between-host survival. Most host-pathogen studies have emphasized the role of intrahost reproduction in the evolution of pathogen virulence, whereas the role of extra-host survival has received less attention. Here, we examin...

متن کامل

Limiting opportunities for cheating stabilizes virulence in insect parasitic nematodes.

Cooperative secretion of virulence factors by pathogens can lead to social conflict when cheating mutants exploit collective secretion, but do not contribute to it. If cheats outcompete cooperators within hosts, this can cause loss of virulence. Insect parasitic nematodes are important biocontrol tools that secrete a range of significant virulence factors. Critically, effective nematodes are ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bulletin of mathematical biology

دوره 73 8  شماره 

صفحات  -

تاریخ انتشار 2011